

Thermochimica Acta 342 (1999) 89-95

thermochimica acta

www.elsevier.com/locate/tca

DTA, DSC and X-ray studies on copper and manganese selenate hydrates

V. Koleva, D. Stoilova*

Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

Received 5 May 1999; received in revised form 15 July 1999; accepted 18 July 1999

Abstract

The thermal dehydration of copper and manganese selenate hydrates has been studied by TG, DTA and DSC. The enthalpies of dehydration stages as well as the enthalpies of formation of CuSeO₄·5H₂O, CuSeO₄·H₂O, MnSeO₄·5H₂O, MnSeO₄·H₂O have been determined. The comparatively lower temperature of CuSeO₄·H₂O dehydration as compared to the kieserite-type compounds MeSeO₄·H₂O (Mg, Mn, Co, Ni, Zn) and the formation of CuSeO₄·0.5H₂O have been discussed in terms of the crystal structures. The dehydration of copper and manganese selenate hydrates has been studied in aqueous and aqueous-acid solutions. A crystallization field of MnSeO₄·2H₂O and CuSeO₄·H₂O has been studied by FTIR spectroscopy. Two crystallographically unequivalent water molecules asymmetrically bonded to the metal ions are assumed to exist in MnSeO₄·2H₂O. The oxygen atoms from water molecules in an almost square planar structure of Cu(H₂O)₂(SeO₄)₂ complex form strong hydrogen bonds due to the strong Cu-H₂O interaction (synergetic effect). Lattice parameters of CuSeO₄·3H₂O have been calculated: a = 5.720(2) Å, b = 13.437(4) Å, c = 7.475(2) Å, $\beta = 97.25(2)^{\circ}$, V = 570.0(2) Å³, SG Cc. (C) 1999 Elsevier Science B.V. All rights reserved.

Keywords: Copper and manganese selenate hydrates; Heat of dehydration; Heat of formation; Lattice parameters; Hydrogen bond strength

1. Introduction

This paper aims at studying the thermal dehydration of some manganese and copper selenate hydrates by the methods of DTA and DSC. Based on the DSC measurements both the enthalpies of dehydration for the observed stages and the enthalpies of formation of some manganese and copper selenate hydrates have been calculated. Our previous investigations of the thermal dehydration of divalent metal selenate hydrates (Mg, Co, Ni, Zn) are discussed elsewhere [1–5].

The dehydration of the copper selenate hydrates in air (TG and DTA) and in solutions is reported in [6]. The following scheme of the dehydration of CuSeO₄·5H₂O was proposed:

$$\begin{array}{c} \text{CuSeO}_{4} \cdot 5\text{H}_{2}\text{O} \xrightarrow{125^{\circ}\text{C}} \text{CuSeO}_{4} \cdot 3\text{H}_{2}\text{O} \\ \xrightarrow{147^{\circ}\text{C}} \text{CuSeO}_{4} \cdot \text{H}_{2}\text{O} \xrightarrow{225^{\circ}\text{C}} \text{CuSeO}_{4} \cdot 0.5\text{H}_{2}\text{O} \\ \xrightarrow{270^{\circ}\text{C}} \text{CuSeO}_{4} \end{array}$$

The thermal dehydration of $MnSeO_4 \cdot 5H_2O$ and $MnSeO_4 \cdot 2H_2O$ is commented in [7,8].

*Corresponding author. Fax: +359-2-705-024

E-mail address: banchem.@bas.bg (D. Stoilova)

^{0040-6031/99/\$ –} see front matter \odot 1999 Elsevier Science B.V. All rights reserved. PII: S0040-6031(99)00238-5

2. Experimental

Manganese and copper selenates were prepared by neutralization of the corresponding hydroxide carbonates with aqueous solutions of selenic acid at 50°C. Then the solutions were filtered and concentrated. The crystals of MnSeO₄ $\cdot x$ H₂O were obtained either by concentration of the solution under vacuum (in order to avoid the oxidation of the Mn^{2+} ions) or by salting out with ethyl alcohol. MnSeO₄·5H₂O and MnSeO₄·2H₂O were prepared by recrystallization from aqueous solutions at 25 and 50°C, respectively, and MnSeO₄·H₂O - from solutions containing about 50-60% selenic acid at room temperature. CuSeO₄·5H₂O crystallizes from an aqueous solution at room temperature; CuSeO₄·3H₂O - from the CuSeO₄-H₂SeO₄-H₂O system at 60° C in the concentration range of 35-45% selenic acid, and CuSeO₄·H₂O - from a solution containing about 60% selenic acid at 25°C. All the reagents used were 'p.a.' (Merck).

The salts obtained were identified by chemical analysis (the metal ion concentrations were determined compelexometrically) and by X-ray powder diffraction method. The X-ray patterns were obtained at a scanning speed of $1^{\circ} \min^{-1}$ with a DRON-3 powder diffractometer using Cu Ka radiation. The lattice parameters were calculated using LSUCR program. The DSC measurements were recorded with a Perkin Elmer DSC-4 instrument up to 400°C using standard aluminium pans with pin holes at heating rates of 5 and 2.5° C min⁻¹ (sample mass 5–6 mg). The temperature and sensitivity were carefully calibrated before the experiments. Indium (purity > 99.9%) was used as a standard substance. The experimental error in $\Delta_{deh}H$ is about 2-2.5%. The enthalpy values were obtained as mean values from three measurements. TG, DTG and DTA curves were obtained using derivatograph Paulik-Paulik-Erdey MOM OD-102 in the temperature range up to 450°C at a heating rate of 5° C min⁻¹ and sample mass 250 mg. The IR spectra of the isotopically dilute samples (5-7% D₂O) were recorded on a Bruker model IFS 25 Fourier transform interferometer (resolution $< 2 \text{ cm}^{-1}$) at ambient temperature using KBr discs (manganese selenate hydrates) and paraffin mulls (copper selenate hydrates).

Fig. 1. DSC curve of CuSeO₄·5H₂O.

The solubilities in the MnSeO₄–H₂O system in the temperature interval of 20–60°C as well as in the ternary system MnSeO₄–H₂SeO₄–H₂O at 20°C were studied using the method of isothermal decrease of supersaturation. The equilibrium was reached in about 10–12 h. The experiments were carried out in the presence of argon to prevent the oxidation of Mn^{2+} ions and at a slight excess of selenic acid (2–3%) for MnSeO₄–H₂O system to suppress the hydrolysis of the salt.

3. Results and discussion

3.1. Copper selenate hydrates

The TG and DTA data of the copper selenate hydrates coincide with those reported in [6] and are not given in the paper. The DSC curve of CuSeO₄·5H₂O (Fig. 1, Table 1) exhibits strong endothermic effect with two maxima in the temperature interval of 30–100°C, which corresponds to the stepwise separation of four water molecules, thus forming CuSeO₄·H₂O. The maximum at 75°C is attributed to the formation CuSeO₄·3H₂O, in agreement with the DTA and TG measurements. However, the lower heating rate (2.5°C min⁻¹) does not lead to the resolution of the two dehydration stages. The dehydration of CuSeO₄·H₂O occurs also stepwise – two maxima at 176 and 205°C are observed in the temperature interval of 130–270°C. Based on the DTA

Table 1			
DSC data for copper and	manganese	selenate	hydrates

Dehydration processes	T_{onset} (°C)	$T_{\rm max}$ (°C)	$\Delta_{\rm deh} H ({\rm kJ}~{\rm mol}^{-1})$
$\label{eq:cuseO4} \hline \\ \hline CuSeO_4{\cdot}5H_2O \rightarrow CuSeO_4{\cdot}3H_2O + 2H_2O \\ CuSeO_4{\cdot}3H_2O \rightarrow CuSeO_4{\cdot}H_2O + 2H_2O \\ \hline \\ $	53.1	75.0 86.3	203.6
$\begin{split} & \text{CuSeO}_4\text{\cdot}H_2O \rightarrow \text{CuSeO}_4\text{\cdot}0.5H_2O + 0.5H_2O \\ & \text{CuSeO}_4\text{\cdot}0.5H_2O \rightarrow \text{CuSeO}_4 + 0.5H_2O \end{split}$	156.8	176.4 205.0	77.9
$CuSeO_4{\cdot}5H_2O \rightarrow CuSeO_4 + 5H_2O$			281.5
$CuSeO_4{\cdot}H_2O \rightarrow CuSeO_4 + H_2O$			77.9
$\begin{array}{l} MnSeO_4{\cdot}5H_2O \rightarrow MnSeO_4{\cdot}4H_2O + H_2O \\ MnSeO_4{\cdot}4H_2O \rightarrow MnSeO_4{\cdot}2H_2O + 2H_2O \end{array}$	41.1	58.5 64.5	154.9
$MnSeO_4{\cdot}2H_2O \rightarrow MnSeO_4 + 2H_2O$	143.7	163.1; 185.8 237.2	112.6
$MnSeO_4{\cdot}5H_2O \rightarrow MnSeO_4 + 5H_2O$			267.5
$\begin{array}{l} MnSeO_4{\cdot}2H_2O \rightarrow MnSeO_4{\cdot}H_2O + H_2O \\ MnSeO_4{\cdot}H_2O \rightarrow MnSeO_4 + H_2O \end{array}$	172.6 247.0	174.6 262.2	48.1 84.9
$MnSeO_4{\cdot}2H_2O \rightarrow MnSeO_4 + 2H_2O$			133.0
$MnSeO_4{\cdot}H_2O \rightarrow MnSeO_4 + H_2O$	208.5	243.8	68.9

and TG measurements $CuSeO_4 \cdot 0.5H_2O$ is assumed to be formed as an intermediate product.

In the literature there are no crystallographic data of CuSeO₄·3H₂O. It is unstable in air and transforms rapidly into CuSeO₄·5H₂O. The X-ray powder diffraction measurements were carried out using a paraffin thin film (parafilm 'M' – American Can Company). CuSeO₄·3H₂O is isostructural with CuSO₄·3H₂O and crystallizes in the monoclinic system with lattice constants: a = 5.720(2) Å, b =13.437(4) Å, c = 7.475(2) Å, $\beta = 97.25(2)^{\circ}$, V =570.0(2) Å³, SG Cc (h k l and d-spacings are given in Table 2).

The formation of CuSeO₄·0.5H₂O as well as the comparatively lower temperature of CuSeO₄·H₂O dehydration as compared to those in the kieserite-type compounds MeSeO₄·H₂O (Mg, Mn, Co, Ni, Zn) need some additional comments. In CuSeO₄·H₂O crystal structure the water molecule is bridging bonded to two crystallographically unequivalent copper ions and exhibits two different Cu–O_w bond lengths (Cu(1)– O_w is 2.434 Å and Cu(2)– O_w is 2.020 Å) [9]. As a result of the different coordination environments of the two copper ions in the squares ([Cu(1)O₄] and [Cu(2)O₂(O_w)₂]) the water molecule is strongly distorted and forms two different hydrogen bonds (2.812)

and 2.723 Å). The strong distortion of the water molecule in CuSeO₄·H₂O crystal structure reflects in the appearance of two bands at 2460 and 2318 cm^{-1} in the IR spectrum of the isotopically dilute sample, corresponding to two O-D distances (Fig. 2(a)). The stronger hydrogen bond (band at 2318 cm^{-1}) than as is expected from the O...O_w distance (2.723 Å) in the kieserite-type selenates [10,11] is due to the strong Cu-H₂O interaction (synergetic effect) in the Cu(2)-octahedra. The large Cu(1)-H₂O distance and the weaker hydrogen bond (band at 2460 cm^{-1}) explain the formation of CuSeO₄·0.5H₂O. Contrarily, a symmetrical water molecule (site symmetry C_2) exists in the crystal structure of the kieserite-type compounds [10], which form comparatively strong hydrogen bonds (see Fig. 2(b)) and as a result the formation of semihydrates is not observed.

3.2. Manganese selenate hydrates

The derivatogram of $MnSeO_4$ · $5H_2O$ (Fig. 3) exhibits four endothermic peaks at 70, 105, 160 and 260°C on the DTA and DTG curves, indicating that the dehydration of the pentahydrate occurs in four steps. The mass losses calculated show that the first peak at

A-ray powder diffraction data for $CuseO_4 SH_2O$					
$d_{\rm obs}$ (Å)	h k l	I/I_0	$d_{\rm obs}$ (Å)	h k l	<i>I</i> / <i>I</i> ₀
5.24	110	80	2.347	$\bar{1}$ 5 1	10
4.97	021	15	2.319	023	7
4.54	$\bar{1}$ 1 1	100	2.264	$\bar{2}$ 2 2	7
4.05	111	50	2.168	240	<5
3.71	002	70	2.143	061	5
3.51	130	40	2.101	$\overline{1}$ 3 3	5
3.36	040	60	2.085	$\overline{1}$ 5 2	5
3.28	$\overline{1}$ 3 1	40	1.983	152	10
3.20	$\overline{1}$ 1 2	7	1.950	133	5
3.08	131	60	1.911	$\bar{2} 2 3$	<5
2.869	112	50	1.871	$\bar{3}$ 1 1	25
2.840	200	7	1.819	170	5
2.658	$\overline{1}$ 3 2	<5	1.762	$\bar{3}$ 1 2	30
2.612	220	5	1.742	$\bar{2} 6 1$	50
2.558	$\bar{2} 2 1$	70	1.686	114	10
2.489	042	20	1.682	261	10
2.458	132	5	1.659	$\bar{1}$ 7 2	10
2.406	$\bar{2}$ 0 2	5	1.653	$\bar{3}$ 3 2	40
2.380	221	10	1.650	$\bar{2}04$	20

Fig. 2. IR spectra of isotopically dilute samples (5/7% D₂O) of CuSeO₄·H₂O (a); MnSeO₄·H₂O (b) and MnSeO₄·2H₂O (c).

 70° C is due to the separation of one water molecule thus forming MnSeO₄·4H₂O. However, no temperature interval of stability of the tetrahydrate could be

Fig. 3. TG, DTG and DTA curves of MnSeO₄·5H₂O.

seen on the TG curve. The transformation of $MnSeO_4.4H_2O$ into $MnSeO_4.2H_2O$ is registered on the DTA and DTG curves with a peak at 105°C. At higher temperatures the dehydration proceeds with the formation of $MnSeO_4.H_2O$ (160°C) and $MnSeO_4$ (260°C). On the basis of the experimental results we propose the following scheme of the thermal dehydration of $MnSeO_4.5H_2O$:

$$\begin{array}{c} MnSeO_4 \cdot 5H_2O \\ \xrightarrow{70^{\circ}C} MnSeO_4 \cdot 4H_2O \\ \xrightarrow{\Delta m_{exp}=5.8\%, \Delta m_{th}=6.2\%} MnSeO_4 \cdot 4H_2O \\ \xrightarrow{105^{\circ}C} MnSeO_4 \cdot 2H_2O \\ \xrightarrow{\Delta m_{exp}=18.4\%, \Delta m_{th}=18.7\%} MnSeO_4 \cdot H_2O \\ \xrightarrow{160^{\circ}C} MnSeO_4 \cdot H_2O \\ \xrightarrow{260^{\circ}C} MnSeO_4 \\ \xrightarrow{\Delta m_{exp}=31.2\%, \Delta m_{th}=31.3\%} MnSeO_4 \end{array}$$

The strong endothermic peak with maxima at 58 and 64° C in the DSC curve of MnSeO₄·5H₂O (Fig. 4(a), Table 1) corresponds to the separation of three water molecules. As TG and DTA experiments show

Table 2

11.00

Fig. 4. DSC curves of $MnSeO_4{\cdot}5H_2O$ (a); $MnSeO_4{\cdot}2H_2O$ (b) and $MnSeO_4{\cdot}H_2O$ (c).

these peaks are attributed to the formation of $MnSeO_4 \cdot 4H_2O$ and $MnSeO_4 \cdot 2H_2O$, respectively. The comparison of the DSC curves of $MnSeO_4 \cdot 5H_2O$, $MnSeO_4 \cdot 2H_2O$ and $MnSeO_4 \cdot H_2O$ (Fig. 4(a), (b) and (c)) shows that the endothermic effects in the temperature interval of $110-270^{\circ}C$ are due to the formation of an anhydrous salt. $MnSeO_4 \cdot 2H_2O$ prepared by crystallization from an aqueous solution at $40^{\circ}C$ dehydrates in two steps forming $MnSeO_4 \cdot H_2O$ and $MnSeO_4$ (174 and $262^{\circ}C$) (see Fig. 4(b)). However, the DSC curve of $MnSeO_4 \cdot 2H_2O$ obtained as a result of the thermal dehydration of $MnSeO_4 \cdot 5H_2O$ is more complicated and consists of three maxima at 163, 185 and $237^{\circ}C$, respectively (see Fig. 4(a)).

The dehydration of MnSeO₄·5H₂O was studied in the MnSeO₄-H₂O system. It is known that MnSeO₄·5H₂O and MnSeO₄·2H₂O crystallize from aqueous solutions at 30 and 60°C, respectively [12]. The experimental results for the MnSeO₄-H₂O system (Table 3 and the X-ray powder diffraction study) show that MnSeO₄·5H₂O crystallizes in the temperature interval of 20–38°C and MnSeO₄·2H₂O – at temperatures higher than 38°C. MnSeO₄·5H₂O forms triclinic crystals with lattice parameters: a = 6.456(6) Å,

Table 3		
Solubility in	the $MnSeO_4-H_2O$	system

Temperature (°C)	Liquid phase (mass%)	Composition of the solid phase
20	35.08	MnSeO ₄ ·5H ₂ O
25	35.54	-
30	36.05	_
35	36.71	-
38	37.12	-
40	37.51	MnSeO ₄ ·2H ₂ O
45	37.08	-
50	36.35	-
60	35.80	-

Table 4 X-ray powder diffraction data for MnSeO₄·5H₂O

$d_{\rm obs}$ (Å)	h k 1	I/I_0	$d_{\rm obs}$ (Å)	h k l	I/I ₀
10.40	010	25	3.26	ī <u>3</u> 1	10
5.94	100	60	3.11	121	15
5.70	110	60	2.971	200	80
5.29	$0\bar{1}1$	15	2.862	$\overline{1} \ \overline{2} \ 2$	20
5.02	$\bar{1} 0 1$	100	2.776	$\bar{1}$ 1 2; 0 1 2	30
4.73	$\bar{1} 1 0$	8	2.550	230	8
4.42	120	50	2.515	$\bar{2}$ 0 2	20
4.17	$\overline{1} \ \overline{2} \ 1$	5	2.327	$041; \bar{2}\bar{3}2$	10
4.04	$0\bar{2}1$	30	2.219	141	15
3.77	021	60	2.129	$\bar{3} \bar{2} 1$	20
3.49	030	60	2.102	231; 132	20
3.35	$1\ \overline{1}\ 1$	15			

b = 10.83(1) Å, c = 6.241(9) Å, $\alpha = 98.7(1)^{\circ}$, $\beta =$ $109.67(8)^{\circ}$, $\gamma = 75.4(1)^{\circ}$, V = 396.6(5) Å³, SG PĪ and proves to be isomorphous with the selenate pentahydrates of magnesium, zinc and cobalt [2,3,13] (h k l and d-spacings are given in Table 4). MnSeO₄·2H₂O crystallizes in the orthorhombic system with lattice parameters: a = 10.421(6) Å; b = 10.516(4) Å; c = 9.232(5) Å; V = 1011.8(7) Å³, close to those reported in [14]. In the literature there are no structural data of metal selenate (sulfate) dihydrates. An information about the symmetry of the water molecules could be derived from the IR spectrum of an isotopically dilute sample (Fig. 2(c)). The appearance of four well resolved bands at 2443, 2518, 2569 and 2600 cm^{-1} , corresponding to four uncoupled OD modes of HDO molecules indicates the existence of two type crystallographically unequivalent water molecules which are asymmetrically

Table 5 Solubilities in the $MnSeO_4$ -H₂SeO₄-H₂O system at 20°C

Liquid phase (mass%)		Wet solid phase (mass%)		
MnSeO ₄	H ₂ SeO ₄	MnSeO ₄	H ₂ SeO ₄	
35.08	_	-	_	
33.52	2.51	55.01	1.00	
29.96	7.89	65.62	2.03	
24.80	12.93	61.50	3.00	
		67.83	3.51 ^a	
21.03	17.92	59.51	4.96	
16.42	26.51	55.80	8.00	
		78.04	2.03 ^a	
15.33	28.50	57.82	6.83	
10.51	36.77	62.50	10.53	

^a After drying in air for 40 min.

bonded to the metal ions. The positions of the bands show that comparatively weak hydrogen bonds are formed in the crystal structure.

As was mentioned above, DTA and DSC analyses show the formation of MnSeO₄·4H₂O which is unknown in the literature. An attempt was made to isolate MnSeO₄·4H₂O from the ternary MnSeO₄-H₂SeO₄-H₂O system at 20°C. The experimental results (Table 5) and the solubility diagram (Fig. 5) point to a crystallization field of MnSeO₄·4H₂O at concentrations of selenic acid from 7.89-28.50%. MnSeO₄·4H₂O is stable only in the saturated aqueousacid solutions and transforms in air rapidly into MnSeO₄·2H₂O as X-ray and chemical analysis show. However, the X-ray pattern (recorded using parafilm 'M') of a freshly prepared tetrahydrate exhibits reflections due to MnSeO₄·5H₂O and MnSeO₄·2H₂O.

3.3. Enthalpies of formation of hydrates

Using the $\Delta_{deh}H$ data obtained from DSC measurements (Table 1), as well as the $\Delta_{f}H^{\circ}$ of MnSeO₄ [15]

and $CuSeO_4$ [16], the enthalpies of formation of manganese and copper selenate hydrates have been calculated:

 $\begin{array}{l} \Delta_{\rm f} H^{\circ} \mbox{ of } MnSeO_4{\cdot}5H_2O = -2246.5\ kJ\ mol^{-1} \\ \Delta_{\rm f} H^{\circ} \mbox{ of } MnSeO_4{\cdot}2H_2O = -1386.5\ kJ\ mol^{-1} \\ \Delta_{\rm f} H^{\circ} \mbox{ of } MnSeO_4{\cdot}H_2O = -1080.5\ kJ\ mol^{-1} \\ (-1087.8\ kJ\ mol^{-1}\ according\ to\ [15]) \\ \Delta_{\rm f} H^{\circ} \mbox{ of } CuSeO_4{\cdot}5H_2O = -1986.6\ kJ\ mol^{-1} \\ (-1989.9\ kJ\ mol^{-1}\ according\ to\ [16]) \\ \Delta_{\rm f} H^{\circ} \mbox{ of } CuSeO_4{\cdot}H_2O = -815.5\ kJ\ mol^{-1} \end{array}$

Acknowledgements

Dr. D. Stoilova is indebted to the Alexander von Humboldt-Foundation for a donation of Fourier transform infrared spectrometer.

References

- [1] D. Stoilova, V. Koleva, Thermochim. Acta 255 (1995) 33.
- [2] D. Stoilova, V. Koleva, Cryst. Res. Technol. 30 (1995) 547.
- [3] V. Koleva, D. Stoilova, Cryst. Res. Technol. 30 (1995) 995.
- [4] D. Stoilova, V. Koleva, Thermochim. Acta 290 (1996) 85.
- [5] V. Koleva, D. Stoilova, Thermochim. Acta 296 (1997) 31.
- [6] G. Gospodinov, Z. Anorg. Allg. Chem. 513 (1984) 213.
- [7] G.A. Zubova, L.A. Prymova, N.M. Selivanova, Izv. Vysshikh Uchebn. Zavedenii, Khim. I Khim. Tekhnol. 8 (1965) 367.
- [8] M.A. Nabar, S.V. Paralkar, Thermochim. Acta 11 (1975) 187.
- [9] G. Giester, Miner. Petrol. 38 (1988) 277.
- [10] G. Giester, M. Wildner, N. Jb. Miner. Mh. 3 (1992) 135.
- [11] D. Stoilova, H.D. Lutz, J. Mol. Str. 450 (1998) 101.
- [12] A. Klein, Ann. Chim. 14 (1940) 263.
- [13] L. Mestres, M. Martinez, Z. Anorg. Allg. Chem. 528 (1985) 183.
- [14] JSPDS, Powder Diffraction Files, vol. 20, Card 721.
- [15] N.M. Selivanova, Zh. Neorg. Khim. 8 (1963) 2024.
- [16] N.M. Selivanova, K.K. Samplavskaja, A.I. Mayer, Tr. Mosk. Khim. Tekhnol. Inst. 38 (1962) 30.